
Contact Area Interaction with Sliding Widgets

Tomer Moscovich
Microsoft Research-INRIA Joint Centre

Orsay, France
tomer@moscovich.net

a b dc

Figure 1: (a) The resize widget is difficult to select since the finger occludes both the target and the selection point. (b)
Using a selection area increased the widget’s effective width, making it easy to capture. (c) Pushbutton selection is hard
to predict when a finger touches more than one button. (d) Sliding Buttons resolve contact ambiguity by varying their
sliding direction.

ABSTRACT
We show how to design touchscreen widgets that respond to
a finger’s contact area. In standard touchscreen systems a fin-
ger often appears to touch several screen objects, but the sys-
tem responds as though only a single pixel is touched. In con-
tact area interaction all objects under the finger respond to the
touch. Users activate control widgets by sliding a movable
element, as though flipping a switch. These Sliding Wid-
gets resolve selection ambiguity and provide designers with
a rich vocabulary of self-disclosing interaction mechanism.
We showcase the design of several types of Sliding Widgets,
and report study results showing that the simplest of these
widgets, the Sliding Button, performs on-par with medium-
sized pushbuttons and offers greater accuracy for small-sized
buttons.

ACM Classification: H5.2 [Information interfaces and pre-
sentation]: User Interfaces. - Input devices and strategies.

General terms: Design, Human Factors.

Keywords: Touch input, touchscreen, interactive surfaces.

INTRODUCTION
The graphical control widgets found on today’s touchscreens
were developed for mouse- and cursor-based systems with
very different input properties than those of touchscreens.
Cursor-mediated input offers separate tracking and dragging
states, an unobstructed view of the screen, and precise con-
trol of a one-pixel selection point. Touchscreens have none
of these qualities, making it hard to manipulate standard con-
trol widgets. Yet touchscreens possess a number of valu-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UIST’09, October 4–7, 2009, Victoria, British Columbia, Canada..
Copyright 2009 ACM 978-1-60558-745-5/09/10 ...$5.00.

able qualities that are ignored by existing widget designs.
Most prior work has attempted to improve touchscreen in-
teraction by making touchscreen input more like mouse in-
put [23, 3, 26, 7]. We propose an alternative: instead of
adapting the input to the control widgets, we adapt the con-
trol widgets to the input.

We present a new strategy for touchscreen interaction based
on area selection and sliding. Our approach approximates a
finger’s contact area with a small selection region, rather than
a single pixel. This representation of touch has two impor-
tant benefits. First, it resolves the ambiguity regarding which
screen object the finger is touching: every object under the
fingertip responds to the touch. Second, as with area cursors,
contact area selection facilitates small target acquisition by
increasing a target’s effective width [13, 29].

The need for large, well-spaced controls severely limits the
design of touchscreen interfaces. Even well designed inter-
faces can be frustrating to use when presented on durable
public terminals that are prone to parallax errors. The one-
pixel selection model is a poor match for users’ perception
of touch. By making every widget in contact with the finger-
tip respond to touch, we shift the burden of disambiguating
the selection from the user to the interface designer. We pro-
pose the use of directional sliders as a means of deciding
ambiguous selections. Sliding mechanisms, such as scroll
bars and volume faders, are familiar elements of the graphi-
cal interface. They use the physical metaphor of a movable
handle constrained to a slot to visually indicate how far, and
in which direction, the handle can slide. Combining contact
area selection with directional sliders is not just a means of
eliminating selection ambiguity; it creates a rich new design
space of Sliding Widgets that can pack multiple functions
into a small space. Furthermore, this framework allows de-
signers to transform symbolic interaction techniques, such as
gesture- and mark-based methods, into direct manipulation
techniques by providing a physically-inspired visual prompt.

In this paper, we illustrate the design possibilities of Sliding

Widgets with several examples. We also report early em-
pirical results which indicate that contact area selection of
Sliding Widgets holds promising solutions for touchscreen
interface design.

RELATED WORK
Many researchers have recognized the issues associated with
touchscreen interaction using point selection. These issues
are collectively known as the fat finger problem. They in-
clude the ambiguity that arises when a finger touches two or
more targets simultaneously, occlusion of both the target and
the selection point, and user uncertainty regarding the map-
ping from the contact area to the selection point. The latter
problem is often worsened by parallax issues [17].

One approach to addressing these issues is to resolve the
problem of occlusion. The Offset Cursor, proposed by Pot-
ter et al. [23] places the selection point slightly above the
contact area. A similar offset strategy is used by Albins-
son and Zhai’s Precision Handle [3], as well as the Win-
dows Vista Touch Pointer [18]. Roudaut et al.’s MagStick
ensures the selection point’s visibility by mapping it to a po-
sition opposite the initial contact [25], while Benko et al.
allow users to control cursor offset using an additional fin-
ger contact [8]. Selection point offset is not the only means
of resolving occlusion-caused ambiguity. Vogel and Baud-
isch’s Shift technique uses a small callout that provides a
view of the hidden contact area. Occlusion can be avoided
entirely by accepting touch input on the back side of the de-
vice [27, 7]. Most of the above techniques use a take-off
selection model, which does not support dragging. Contact
area-based selection does away with the need for a tracking
state for simple selection, and supports dragging as its pri-
mary state. While occlusion avoidance techniques play an
important role in making legacy applications accessible on
touchscreens, they introduce a layer of indirection between
the user’s touch and screen objects. The finger manipulates a
selection widget, or cursor, which in turn controls screen ob-
jects. Sliding widgets remove this indirection, allowing users
to control objects with direct touch.

An alternative approach to reducing selection point ambigu-
ity is to precede pointing by a zooming step [3, 8, 19]. Users
first zoom in on the target using a tool or gesture, and then
select it. Some systems zoom in automatically when they de-
tect selection ambiguity [20]. Although these methods effec-
tively reduce occlusion and selection point ambiguity, they
make target selection a two step process, an undesirable com-
plication for such a common operation.

While resolving selection point ambiguity is important for
supporting legacy systems, Yatani et al. [30] show that it
is only one of many methods for resolving target selection
ambiguity. Their Escape technique uses directional gestures
to distinguish one of several nearby targets. This disambigu-
ation method is very similar to that of Sliding Widgets, and is
the inspiration for our Control Bead widget. The key differ-
ence is that by using the metaphor of real-world manipulation
the mechanism for selecting Sliding Widgets becomes self-
disclosing. Once the sliding model is understood, it allows
novice users to discover software functionality and to decode
the operation of novel widgets. In contrast, gesture-based

methods must be explained by a manual or a tutorial. While
some mark-based techniques such as Marking Menus [16] do
have a functionality-disclosing novice mode, the operation of
the menu must still be explained to the user. We expect that
many mark- and gesture-based techniques will have useful
sliding-based analogs, which may be better suited to touch
input systems where a command-mode switch is not avail-
able.

Using rich shape information for interaction is not a new
idea. Krueger’s VIDEOPLACE system uses a silhouette of
the user’s hands to interact with digital objects [15]. Reki-
moto describes a technique that uses contact area shape to
create a simulated potential field that can be used to manipu-
late objects [24]. Cao et al. [9] use contact shape, along with
surface motion vectors, to manipulate objects in a physically
inspired manner, while Wilson et al. [28] use shape and mo-
tion input to manipulate objects in a real-time physics simu-
lation. The idea of using contact shape together with a physi-
cal manipulation analogy can be seen as a general case of our
interaction framework, which only uses a finger contact area
approximation along with sliding. However, these contact-
shape based techniques are aimed at generic object manip-
ulation, rather than at using simple control widgets, and do
not address selection ambiguity. Furthermore, they require
much richer input than is available on most touchscreens. We
believe that Sliding Widgets will fit well within the context
of these general shape-based manipulation frameworks, and
will allow them to take advantage of the expressive symbolic
language of widget-based interfaces.

Control widgets that contain a sliding element for direct ma-
nipulation are common in many interfaces. These are gener-
ally used for adjusting continuous parameters, as with sliders
and scroll-bars. Sliding has also been used for discrete con-
trol, as with the slider-based toggle-switches of Plaisant and
Wallace [22] or the unlock slider of the Apple iPhone [5].
The utility of direct manipulation sliding gestures has been
recognized as an important element of touch interface design:
the interface of Karlson et al.’s LaunchTile [14] is almost en-
tirely sliding-based. Existing Sliding Widgets have proved to
be very useful, but we believe their expressiveness and utility
for touch interaction can be greatly increased when they are
combined with contact area selection. We illustrate this with
a number of examples.

CONTACT AREA INTERACTION WITH SLIDING WIDGETS
The width of the human finger is often cited as a cause of dif-
ficulties in touchscreen interaction. We show how to design
interfaces where the finger’s width is an asset rather than a
limitation. Figure 1(a,b) shows a simple example. While the
window’s resize widget is difficult to hit with a one-pixel se-
lection point, using the contact area under the finger makes
this task much easier. For area-based selection to behave in
a consistent, unambiguous manner, all active objects in the
selection area must respond to the touch. Figure 2 illustrates
another advantage of this interaction model. The left and
right volume sliders can each be adjusted separately, but by
placing a finger so it overlaps both slider knobs the user can
move them together. Moreover, we can get these advantages
with no change to the hardware. We have found that sim-

ply approximating the contact area with a small circle works
very well in practice. The usefulness of contact area selec-
tion will likely increase with the availability of touchscreens
that report multiple contact points or the size and shape of
the contact area.

In general, area-based selection has several advantages over
point-based selection:

• It allows easy acquisition of small targets;
• removes ambiguity, as every item under the fingertip re-

sponds to the touch;
• is resilient to occlusion, since it is easy to predict what

occurs in the occluded region;
• is resilient to parallax errors, since a selection area is likely

to cover the target even if shifted slightly;
• is compatible with drag-based interaction widgets;
• allows manipulation of multiple controls simultaneously;
• can take advantage of additional contact information such

as size and shape.

The disadvantage of area-based selection is that when a fin-
ger touches several control widgets, but the user only wants
to manipulate one, an additional disambiguation mechanism
is needed. This mechanism may add complexity to the inter-
face and may call for the redesign of many common control
widgets.

We propose Sliding Widgets as a means of disambiguating
area-based selections and for building a variety of useful
interaction instruments. Figure 1(d) shows an example of
Sliding Buttons. A Sliding Button consists of a small slider
thumb mounted in a short track. To activate the button, a user
slides her finger so as to cause the thumb to slide to the op-
posite side of the track. The finger stroke can start outside
the button and does not require much accuracy. As long as a
small part of the selection area slides across the button in the
indicated direction, the slider thumb will catch and move to
the on position in analogy to a standard light switch. While
it is likely that the contact area will also slide over adjacent
Sliding Buttons, their slider thumbs will not move, as their
tracks are perpendicular to the stroke direction.

Apart from disambiguating area-based selection, widgets that
are activated by sliding have several advantages over those
activated by touch or take-off:

a b

Figure 2: A selection area lets the user control these
left and right volume sliders simultaneously (a) or sep-
arately (b).

Figure 3: The slider thumb of the OK button can be
moved by any touch within the highlighted green area.
The Cancel button track is orthogonal to the OK button
to avoid accidental activation.

• They pack multiple meanings into a small space by using
multiple sliding directions;

• avoid accidental activation by indexical pointing or by
brushing against the display;

• provide an additional state analogous to mouse tracking;
• allow mnemonic association of direction with meaning

(e.g. back/next buttons);
• support sequential or parallel activation of multiple wid-

gets in a single stroke;
• allow “infinite width” widgets at window edges;
• provide a visible affordance for interpreting novel widgets;
• provide a visual prompt for gesture and crossing methods.

The disadvantage of sliding widgets is that they may require
a bit more planning or effort of the user. The user must inter-
pret the sliding directions of the widget and its neighbors to
determine the stroke direction, and to avoid activating nearby
widgets. We believe that this effort will be small in well de-
signed interfaces, and that the advantages of using contact
area selections in combination with Sliding Widgets will out-
weigh the disadvantages for a significant number of interface
designs.

DESIGNING SLIDING WIDGETS
Sliding Buttons
Sliding Widgets are designed for use with contact area selec-
tion, so their activation footprint is larger than their visible
extent. Figure 3 shows the activation footprint for a sim-
ple Sliding Button and a small circular activation area. Any
touch within this highlighted area can potentially move the
slider thumb. The slider will also move if the selection area
slides into this region from above. While this large footprint
makes the OK button easy to select, it can also lead to un-
desirable interactions with nearby widgets. Sliding Buttons
with overlapping activation areas must be oriented with ei-
ther opposing or near-orthogonal sliding directions to avoid
ambiguous selections.

Unlike standard touch buttons, where the screen stops the
user’s finger once a button has been pressed, Sliding Buttons
provide no physical feedback when the slider thumb reaches
the on position. Thus, it is important to provide alternative
forms of feedback. Our Slider Buttons produce a click sound
on activation and visually highlight the slider thumb or the
button border. To compensate for the fingertip occluding the
button, the slider thumb sticks to the on position for a fraction
of a second after losing contact with the finger. It then springs
back to the start of the track, and the highlighting is disabled.

At each finger motion event, the slider thumb of each Sliding
Button under the selection area is advanced or withdrawn by
the dot product of the finger’s motion vector and the direc-
tion vector of the Sliding Button. Thus, if a Sliding Button
is brushed by an off-axis stroke aimed at selecting a neigh-
boring widget, the slider thumb will move slightly along the
track and spring back when it loses contact. These move-
ments give users feedback as to the degree of error in their
strokes, so they may adjust their level of precision. The slider
track is kept short relative to the width of the thumb, allowing
activation with a short flick gesture, rather than a long stroke.
This short sliding distance makes button selection more like
a goal-crossing task than a steering task [1, 2]. Since in-
put strokes are rarely in perfect alignment with the track, too
short a track can lead to accidental activation during selection
of nearby widgets, while too long a track can make button ac-
tivation into a more difficult steering task.

Crossing
Sliding Buttons share many similarities with goal crossing
widgets since a user’s finger need not land directly on a Slid-
ing Button in order to activate it, but must only slide over
it. Accot and Zhai [2] have found that, for stylus input, peo-
ple have an easier time handling motion constraints that are
orthogonal to the pointing movement than they do handling
collinear motion constraints. This can lead to potential re-
ductions in selection time and errors in interfaces that use
orthogonal constraints and avoid the collinear motion con-
straints found in pointing-based interfaces. For example,
Sliding Buttons placed at window edges with an outward ori-
entation can be thought of as orthogonally-constrained tar-
gets with practically infinite width along the line of move-
ment. A similar effect can be achieved by locking all but-
tons after the first selection in a stroke. While such locking
widgets may facilitate selection, the expressiveness of goal
crossing interfaces is most apparent in non-locking scenar-
ios.

Goal crossing interfaces allow for the fluid composition of
multiple commands in a single stroke [4]. Figure 4(a) shows
a simple example. The Sliding Button toggle switches are
oriented so that the user may select all of the switches, or a
contiguous block, in a single downward stroke [6]. A sin-

a b c

Figure 4: These toggle switches can be oriented to
facilitate single stroke selection (a), or individual se-
lection (b). Diagonal orientations allow both group and
individual selection.

a

b

Figure 5: This multi-function browser button allows a
user to move backward or forward in history with quick
stroke to the left or right (a). A small pull-out knob
reveals the browsing history (b).

gle stroke up will deselect the switches. This layout is use-
ful when the interface designer expects users to select large
groups of switches but makes it difficult to select just one,
as only a very short stroke would avoid accidental selections
of neighboring switches. A designer can facilitate selection
of only one or two switches by using a layout of alternat-
ing orthogonal directions (Figure 4(b)). This layout is espe-
cially useful for tightly packed widgets. Figure 4(c) shows a
compromise solution. Setting the sliding direction at 45◦ to
the column line allows users to select multiple switches by
stroking along the column or to select a single switch with
an orthogonal stroke [4]. However, the visual presentation
of this last example is more complex and may be difficult to
interpret.

Multi-function widgets
Sliding Widgets can load multiple meanings into the same
screen area via direction multiplexing. The browser Back
button in Figure 5 packs three functions into a single widget.
The slider thumb’s home position is at the center of the but-
ton’s slot, rather than at one end. A flick to the left requests
the previous page in the browsing history, while a flick to
the right requests the next page. These directions are cho-
sen in analogy to the direction of reading to provide a simple
mnemonic. A small pull-out knob located under the slider
thumb gives access to a drop-down list of the browsing his-
tory. Since the knob’s sliding direction is orthogonal to the
main slider track, users can slide it down without activating
the back/forward functionality.

These widgets share not just overlapping activation foot-
prints, as in simple Sliding Buttons, but much of the same
visual footprint. This type of design is well-suited to small-
screen devices where screen real estate is scarce. The com-
pact design is not only due to direction multiplexing; the pull-
out knob can be made very small thanks to area selection. Far
smaller than an average fingertip, the knob would be very dif-
ficult to acquire using point selection.

a b

c d

Figure 6: Area-based selection makes it easy to ac-
quire small targets like these Control Beads. Sliding
the bead down the wire (a) selects the bead, and pro-
vides an offset-cursor (b) to keep the anchor point vis-
ible. The wires of nearby beads repel each other (c) to
ensure an unambiguous selection (d).

Selection Instruments
Many touchscreen selection techniques mediate input through
some form of cursor in order to overcome occlusion or in-
crease precision. Sliding Widgets require no such indirec-
tion for a large variety of interaction scenarios. However,
indirection through a digital instrument may facilitate cer-
tain manipulation tasks. One example is point selection and
editing in vector based illustration software. Users of such
programs must frequently select very small targets, which
represent curve control points, and must position them with
precision. Figure 6 illustrates Control Beads, Sliding Wid-
gets that facilitates the precise selection and positioning of
curve control points. Control Beads may also be used in re-
lated tasks, such as placing point-of-interest pins on a map.

Control Beads follow a bead-on-a-wire metaphor. Before se-
lection, the bead is centered at the control point location and
is free to slide along a short dangling wire. To select a Con-
trol Bead, the user touches the bead and slides it down to the
opposite end of the wire. Once there, the system produces
a click sound, highlights the wire in red, and detaches the
bead and wire from the point where they were anchored, al-
lowing the use to drag them together to a new position. The
wire now acts as an Offset Cursor [23]. Its anchor point,
visible above the user’s fingertip, allows her to position the
Control Bead with no occlusion ambiguity. To release the
bead, the user simply lifts her finger, and the bead springs
back to the top of the wire. Note that the offset only plays
a role in positioning, and not in selection, so that the fin-
ger drag state can be used for dragging screen objects rather
than for tracking. Area selection makes picking an isolated
Control Bead easy, but when beads are close, sliding must
again be used for disambiguation. The wires of neighboring
Control Beads repel each other, so that each bead slides in
a different direction. The wires never point above the hori-
zontal to ensure occlusion-free positioning. When multiple
beads are near each other, the sliding directions cannot be or-
thogonal. As such, the selection stroke’s direction vector has
a nontrivial projection onto the direction vector of multiple
Control Beads. The length of the wires must be sufficient to
ensure unambiguous selections.

The menu selection indicator shown in Figure 7 is another

example of a cursor-like instrument. The transparent Slid-
ing Button serves to both highlight an item and then to select
it with a quick flick to the right. While the item list could
have been constructed simply by alternating left- and right-
oriented Sliding Buttons, the presentation would have been
cluttered, and half of the items would have required two sep-
arate strokes to select (one to reveal the drop-down menu,
and another to select the item). The selection indicator makes
for a cleaner presentation by removing the need for multiple
widgets, and allows for single-stroke selection by ensuring
that the selection mechanism is always at the user’s fingertip.
For a single stroke selection, the user pulls down the history-
list knob, continues the downward stroke to highlight the de-
sired item, and then strokes to the right to engage the slider
thumb and confirm the selection. If the user wishes to pause
and consider the list, she may lift her finger for a moment,
and then place it back down on the selection indicator in or-
der to slide it over another item or to confirm the selection.

The physical metaphor underlying Sliding Widgets serves
only to explain their operation to the user and need not con-
strain their design. The design of the drop-down selection
indicator illustrates several useful departures from physical
constraints. The indicator does not simply move up and down
at the same rate as the finger. Instead, it is gently pulled to-
wards the nearest item so that it never straddles two items
but always highlights exactly one. If the user places her fin-
ger down on a non-highlighted item, the indicator jumps to
that item to ensure an unambiguous selection and a consis-
tent activation mechanism. When the vertical component of
motion exceeds the horizontal the slider thumb is locked so
as to reduce the constraint on the user’s movement. Like-
wise, when the motion is primarily horizontal the slider will
not slip onto an adjacent item.

Additional Button Features
While standard pushbuttons have only two states, touched
and not touched, Sliding Buttons can encode a continuum of
states which allow for many useful design variations. For
example, a Sliding Button can be touched but not activated.
This state is analogous to the mouse tracking state and can be
used for similar purposes, such as providing tool-tip help to
explain a button’s function. Figure 8(a) illustrates an action-
preview-on-touch design [12]. When a button is touched,
the system displays a preview of the action it performs. The
user can remove her finger to cancel the action or slide the
slider thumb to perform it. Note that the buttons must be
sufficiently spaced so that only one can be touched at a time.

a b c d

Figure 7: The selection indicator in this drop-down
menu is a floating Sliding Button that plays the role of
both cursor and confirmation button. It lets users select
items with one L-shaped stroke, or with a sequence of
strokes if they need time to read the menu.

a

b

c

Figure 8: Sliding Buttons can use their pre-activated
touch state to show a preview of the action they perform
(a). Increasing the track length on contact secures the
button against accidental activation when the user is
distracted or mobile (b). A friction metaphor lets users
press either a single button, or two at once (c).

The Slider Button in Figure 8(b) is a variation on Chu et al.’s
haptic Hard-To-Press Buttons [10] that uses both the touched
state and the continuous transition between the rest and ac-
tivated states. The button is designed to prevent inadvertent
execution of commands with potentially costly consequences
(e.g. as when dismissing an accidentally activated dialog box
without reading the prompt). The Yes button appears to re-
quire only a short flick to the right to activate, but the slider
track extends on contact so that a short flick will fail to reach
the end of the track. The user must notice the change and
make a long, purposeful stroke to successfully activate the
button. The long track also secures the button from activa-
tion by a finger unintentionally brushing the screen.

Figure 8(c) shows another use of the intermediate sliding
state. These buttons do not use sliding as a disambiguation
mechanism. Instead, they use a simple analogy to friction
to determine the control to display ratio [9]. When nearly
half of the finger covers the button it has a good grip on the
slider thumb, with a control-display ratio of one. As the se-
lection area covering the button decreases, the ratio drops off
to zero. Thus, when the user’s finger is mostly within the
bounds of one button, it moves the slider thumb easily, with
only a slight effect on neighboring buttons. If the user places
her finger firmly between two buttons, with about half of the
selection area on each, she can activate both Slider Buttons
simultaneously. For this method to work effectively the but-
tons must be large enough to allow unambiguous selections,
and simultaneous activations must have meaningful results.

EVALUATION
Touchscreen interaction based on area selection and Slid-
ing Widgets raises many empirical questions. These include
questions about touch area activation and its effects on se-
lection and user perception of target width, and questions
about widget design, such as the optimal sliding distance and
the effects of multiple orientations on user motor planning.
These questions are beyond the scope of this paper, but we
do address one question that is important to interaction de-
signers: do the advantages of Sliding Widgets come at the
cost of selection time or accuracy? Specifically, we compare

the performance of Sliding Buttons to that of pushbuttons,
which are simpler to select since they require no disambig-
uation step. Our study does not aim to isolate any aspect of
Sliding Button design or selection; it only gauges mean per-
formance of the buttons in a typical use scenario.

Stimuli and Toolbar Interface
We model our task after the discrete selection task of Parhi
et al. [21], which simulates the selection of toolbar buttons.
This task accounts for the effects of adjacent targets on incor-
rect selections. It allows for errors due to misses, overshoots,
and false interpretation of the sliding direction. We modify
the task to include several targeting directions as in the work
of Vogel and Baudisch [26]. This accounts for the effect of
target location on user accuracy [17], and keeps the user from
adjusting to a unique offset due to parallax error. Note that
discrete selection tasks show different time and error charac-
teristics than serial selection tasks such as text entry [11, 21].
Data entry is not the main target of Sliding Buttons, and our
results may not extend to such tasks.

Timer circle

Home zone

Target indicator

Toolbar Other button types

Target display

Figure 9: The experimental setup for medium size
Slider Buttons. Other button conditions are shown in
the inset.

The task setup is shown in Figure 9. A simulated toolbar is
centered in each of the screen’s four quadrants. Each toolbar
is made up of eight buttons labeled A through H and arranged
in two rows of four. In the middle of the screen are a square
“Home” zone and a target letter display area. The center of
the home zone is 71 mm from the center of each toolbar. A
black outline surrounds the current target toolbar. To simu-
late use of a familiar interface, we chose to eliminate reading
and search time from our measurements. Thus, we force the
participant to keep her finger in contact with the home zone
for 0.4 seconds, while the system draws a circle around the
target display area, giving her the chance to read the target
letter and find the target toolbar. Early removal of the finger
restarts the timer.

We do not arrange Sliding Button toolbars so as to minimize
overshoot errors. Doing so would require numerous direc-
tion changes which tend to confuse users. Instead, we select
slider directions so they are easy to remember. Buttons on
the top row slide up and to the right, while sliders on the bot-
tom row slide down or to the left. We do not use any auto-
mated overshoot correction, as we are interested in establish-
ing baseline performance without complex enhancements.

Unlike pushbuttons, a Sliding Button cannot be simply rep-
resented by a colored rectangle. Slider Buttons require subtle
shading to help the user distinguish the slider thumb from the
track. We developed the following design through a series of
iterations and informal tests. We then matched this design to
the visual design of the pushbuttons. The button designs used
in the experiment are shown in Figure 9. The entire button
area, including the margins, is active and responds to touch.
There is a one pixel visual margin above and to the left of
the button, and a two pixel margin below and to the right,
in order to accommodate a slight drop-shadow effect. This
drop-shadow is drawn only around the slider thumb. Push-
buttons are drawn as though the slider thumb fills the entire
button. Small buttons are 17 by 18 pixels (3.5 by 3.5 mm)
and medium buttons are 39 by 32 pixels (7.75 by 6.25 mm).
These sizes were chosen in a pilot study to represent realis-
tic difficult and easy targets. Average target size for existing
hand-held touchscreen devices is around 3.8 mm [21].

Sliding Buttons were activated by sliding the thumb for 7
pixels (horizontal) or 8 pixels (vertical) in small buttons. For
medium buttons these distances were 9 and 10 pixels. The
selection area was a circle 28 pixels (5 mm) in diameter. It
was rendered during finger contact as a subtle translucent red
circle and was occasionally visible during fast flicks, due to
rendering lag. Pushbuttons were activated using a take-off
strategy as is done on current touchscreen devices [21]. On
contact, a pushbutton is drawn in a depressed state, and its
outline is drawn in red. A small cross-hair cursor indicated
the selection point but was rarely visible due to obstruction
by the finger. Once a button is activated, its outline is drawn
in red for 0.2 seconds, and a click sound is produced. An
incorrect selection (including selecting multiple Sliding But-
tons) produces a bell sounds. No sound is produced when
participants touch unused space surrounding buttons or touch
a Sliding Button without activating it, as this would not cause
an error in a real system.

Experimental Design and Procedure
A within-subject full factorial design was used. The inde-
pendent variables were button type (Pushbutton and Sliding
Button) and button size (Small and Medium). Testing for
each of the four conditions was conducted in 4 blocks of 25
target acquisition trials per block, with the first block serving
as practice. The order of presentation of the four conditions
was balanced according to a Latin square. The target button
and toolbar were selected randomly from a uniform distribu-
tion. In summary, the experimental design (without practice
blocks) was:

12 Participants
× 2 Button Types (Pushbutton, Sliding Button)
× 2 Button Sizes (Small, Medium)
× 3 Blocks
× 25 Trials

3, 600 Total Trials

Participants spent approximately 30 minutes performing the
task, filling out a short questionnaire, and giving informal
feedback on a variety of Sliding Widgets. The experimenter

began by explaining the task and the operation of the two
button types, and ensuring that the participant was able to
select each type and size of button. Participants were asked
to perform the task as quickly and accurately as possible.

To begin a trial, a participant places her finger on the home
zone (outlined by the target indicator and colored green). The
home zone then turns a pale blue, the target indicator shifts
to surrounds the target toolbar, and the target letter is shown
in the target display area. When the timer circle is complete,
the participant attempts to select the target letter from the
indicated toolbar. The home zone turns gray when it loses
contact with the finger. Upon a correct selection, the target
indicator moves back to the home zone, and the zone is again
drawn in green. The participant must continue to attempt
a selection until she selects the target button and no other
button.

Apparatus
The experiment was performed on a Dell Latitude XT Tablet
PC using a 1.33 GHz Intel Core2 Duo CPU. Touch input was
provided via an N-trig capacitive touchscreen measuring 267
mm by 163 mm with a resolution of 1,280 by 800 pixels.

Participants
Twelve volunteers (four women) 24 to 50 years of age were
recruited from our institution. Seven of the participants
rarely used touchscreens, and five had used touchscreens
from one to several times a day (ATM, ticket machine, or
smart-phone). Two participants were left handed.

Results
Selection Time Selection time was measured from the time
the finger left the home zone to the time the correct but-
ton was activated (either on take-off or slider reaching end
of track). Trials on which an error was made, or which
required more than one attempt, were eliminated from the
data set, and the mean of the remaining trials was com-
puted. Results are summarized in Figure 10(a). An analy-
sis of variance revealed a significant main effect for Button
Size, F1,11 = 101.05, p < 0.05, but no significant effect for,
or interaction with, Button Type. Two planned comparisons
between Button Type within Button Size found no signifi-
cant difference. The 95 % CI about the mean difference be-
tween Sliding Button and Pushbutton were −0.11 to 0.14 s
for Small and −0.08 to 0.10 s for Medium. We expect that
difference in selection time is not likely to be of practical
importance to interaction designers.

Percent Correct Percent Correct is defined as the percent of
trials where the participant activated the correct button, and
only the correct button, in only one attempt. Note that it is
possible for a participant to select the correct Sliding But-
ton and then, in the same stroke, select another button. We
count this as an error in order to keep motivation for accu-
racy the same as for Pushbuttons. Results are summarized
in Figure 10(b). An analysis of variance revealed a signifi-
cant main effect for Button Type, F1,11 = 8.67, p < 0.05,
and Button Size, F1,11 = 114.70, p < 0.05, as well as an
interaction between the two factors, F1,11 = 7.36, p < 0.05.
For the Small condition, using a Sliding Button yielded sig-

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ti
m

e
in

 s
ec

on
ds

0
20

40
60

80
10

0

P
er

ce
nt

 C
or

re
ct

Small Medium Small

Slider Button
Pushbutton

Significant Diff.
95% CI

Medium

Activation Time Error-free Trials

a b

Figure 10: Activation time for perfect trials (a). Percent
of trials where only the correct button was activated on
the first attempt (b).

nificantly more correct selections, t11 = 3.70, p < 0.025†,
with a mean difference of 7.33 Percent Correct between the
two conditions. No significant different was found between
Button Type in the Medium condition, with a 95 % CI of
−2.20 to 5.31 % on the mean difference between Slider But-
ton and Pushbutton. Thus, we conclude that Sliding Buttons
can increase selection accuracy for small buttons, and have
no negative effects on selection of medium size targets.

User Feedback Overall, participants had no trouble learn-
ing to use Sliding Buttons, although two had some trouble
distinguishing the slider thumb from the track when first pre-
sented with Small size buttons. Common early problems in-
cluded making curved strokes, which activated orthogonally
placed buttons, and accidental activation due to overshoot.
Users were able to quickly adjust for these errors. Most par-
ticipants felt that slider buttons helped them select small tar-
gets, with 10 of 12 preferring to use Sliding Buttons for small
buttons. However, participants did feel that Sliding Buttons
required a bit more effort to use than Pushbuttons, with 9 of
12 stating a preference for Pushbuttons for medium buttons.
Specifically, participants cited difficulty sliding their finger
upwards on the screen, saying that they felt that their fin-
ger would often stick or skip when sliding up. Participants
also cited the need to avoid overshoot or starting a stroke too
early. Many recognized that Sliding Buttons oriented up and
down were easier to select than those oriented left and right,
as there were no nearby constraints on strokes in those di-
rections. Participants responded favorably to the idea of au-
tomatic overshoot correction by blocking input after the first
button was activated in the course of a finger stroke. While
trouble sliding upwards and overshoot were the primary con-
cerns raised by participants, some did mention that selecting
a sliding direction seemed to require a bit of extra thought.

Following the experiment, participants were asked to try
out a number of the Sliding Widget designs presented in
this paper. Participants readily understood the bidirectional
back/forwards button, and were able to use the pull-out knob

†Bonferonni correction for two planned comparisons at α = 0.05.

and history menu with only a trivial amount of instruction.
All participants quickly grasped how to select multiple check-
boxes in a single stroke and appreciated this functionality.
While most participants were able to understand how to
use Control Beads without assistance, a few did not. Once
prompted that “the widgets work by sliding” all were able
to understand their function through experimentation. Com-
mon initial errors in using Control Beads included neglecting
to activate the bead when attempting to move it upwards, and
expecting the bead to drop directly under the finger instead
of at the visible anchor point. Occurrence of these errors
dropped off sharply after a minute or two of use. Partici-
pants showed appreciation for the ability to manipulate two
sliders simultaneously and readily understood how to do so.
All participants required multiple attempts (2 to 6) to resize a
window using standard point selection but were able to cap-
ture the resize handle nearly every time using area selection.

Discussion
The results of our experiments indicate that selection area ac-
tivation of Sliding Widgets is a promising strategy for touch-
screen interaction. We found no reduction in performance,
and an improvement in accuracy for small targets. While
Sliding Buttons do require more effort of the user, the larger
activation area due to area selection appears to compensate
for this effort.

Note that the above analysis of Percent Correct only looks at
perfect trials, as there are many possible definitions of error.
For example, since multiple Sliding Buttons can be selected
in a single stroke, participants often activated the correct but-
ton several times before activating only that button. This sim-
ulates an application that ignores input when two commands
are activated in one stroke. We chose this error model to get
a baseline of Sliding Button performance without any extra
features. To get an idea of performance when buttons are
locked after one is activated during a stroke, we can look at
the percent of trials where the first activated button is the cor-
rect one. A similar metric for Pushbuttons would also look
at the percent of trials where the first activated button is the
correct one and discount attempts that do not press any but-
tons. For small buttons, percent of trials where the first button
pressed is correct are 96 % for Sliding Buttons, and 86 % for
Pushbuttons (significant difference, t11 = 6.12, p < 0.025†).
For medium buttons the values are 99 % for Sliding But-
tons and 98 % for Pushbuttons (not a significant difference).
While this theoretical performance seems approximately the
same for medium buttons, it would be accomplished in fewer
attempts for Sliding Buttons than for pushbuttons. The above
analysis only considers time for perfect trials. However, had
we looked at time to first correct activation we expect the re-
sults would have been skewed in favor of Sliding Buttons due
to fewer required attempts. While we did not collect data for
number of attempts to first correct activation, the mean num-
ber of attempts per trial for Sliding Buttons (1.30, 1.10 for
small and medium buttons) were not more than for Pushbut-
tons (1.45, 1.11 for small and medium buttons respectively).

The theoretical performance of Sliding Buttons with over-
shoot correction is promising. Even without an explicit mech-
anism, similar performance would be expected of outward-

facing Sliding Buttons at window edges. However, Sliding
Buttons do seem to require a bit more cognitive effort for
planning, and may require extra physical effort for making
the stroke. Tapping the screen is simpler and easier than
stroking. It is important for a designer to weigh the benefits
of Sliding Buttons against the additional effort they require.
While much of this effort may be reduced by careful design,
the expressiveness of Sliding Widgets is not always neces-
sary, especially given sufficient screen space. However, if
screen space is not an issue, we believe that selection area ac-
tivation will still be beneficial. When graphical elements are
sufficiently spaced, using a selection area allows for visually
smaller targets, reduces parallax issues, and avoids confusion
at the edges of objects. Furthermore, it allows for an inter-
action framework where push and sliding activated widgets
can be freely mixed, allowing an interaction designer to use
each type of widget as appropriate.

LIMITATIONS
There are a number of limitations on the design of interac-
tion based on Sliding Widgets. Our informal observations,
and comments from participants in our experiment, indicate
that sliding direction cannot be assigned arbitrarily. While
using multiple directions allows an interface to disambiguate
between many items, it can confuse users. Sliding direction
must be assigned in a consistent and easy to remember man-
ner in order to provide a pleasant user experience. Arbitrary
orders, meant only to optimize disambiguation, often lead
to errors where users attempt to slide the widget thumb in
the wrong direction. Interfaces should also avoid requiring
users to slide up on the screen. While all of our users were
able to slide upwards, many found it to be an uncomfortable
gesture, so the direction should be used sparingly in setups
similar to that in our study. Limitations on slider directions
may be even greater in applications designed for one-hand
thumb operation.

Another issue with sliding is that it requires a light touch and
a screen with a low coefficient of friction. Some of our users
found that sweat made their fingers stick. This reduced pre-
cision in tasks such as positioning Control Beads and was
especially problematic when sliding the finger upwards on
the screen. It is possible that Sliding Widgets are not ap-
propriate for resistive touchscreens which require significant
force to register a contact. However, since false and acciden-
tal touches are less of an issue with Sliding Widgets, it may
be possibly to design these screens to require less force.

Finally, a strong limitation on Sliding Widget design is that
the widget must look like a slider—it must appear to have
some movable sliding element that explains its operation.
These visuals require space that could instead be used for
labels or icons. Push activated widget have few limitations
on their visual design, as users learn their operation simply
by touching them.

FUTURE WORK
We have presented a variety of novel buttons and widget de-
signs that use sliding and selection areas. Many of these can
be improved, and many more are yet to be discovered. For
example, selection accuracy can be improved using various
strategies for overshoot correction, such as locking and dy-

namic adjustment of the control-display ratio. Snapping a
stroke’s direction to the direction vector of the nearest wid-
get can facilitate selection of tightly packed widgets. Rather
than overloading commands on sliding direction, multi-stop
Slider Buttons could use sliding distance to join related com-
mands. Other designs can also prompt the user to draw a
stroke on the screen. Dials, levers, and more complex mech-
anisms, may be good candidates for widget designs.

While we only explored the use of a fixed-sized circular se-
lection area, better approximations of the contact area have
many potential uses. For example, precise selections may be
performed with a light touch of the little finger, and multiple
selections by a broad sweep of the hand. Widgets could also
take advantage of multiple points of input for parallel control
of multiple parameters.

It is important to ensure that Sliding Widgets can support all
functions provided by current graphical control widgets. To
that end we propose investigation into Sliding Menu design.
Designs may be based on the common cascading drop-down
menu, as illustrated by our web browser example, or on mark
based menu designs. While we expect that most legacy appli-
cations would not be trivially transformed to use a selection
area instead of a point, certain instances, such as web-pages
and forms, may allow for automatic widget layout and slider
direction optimization.

The results of our experiment show that Sliding Buttons are
a viable replacement for pushbuttons, but they do not answer
many questions regarding button design. What are the speed
and accuracy trade-offs of various button designs? How can
designers reduce the additional cognitive effort they require?
How should designers choose sliding distance and direction?
Contact area selection is also worthy of study on its own.
We have yet to learn how it affects user perception of target
width, or how users perceive contact area size. Understand-
ing these effects is important for selecting effective button
size and spacing.

CONCLUSIONS
Standard approaches for solving touchscreen interaction dif-
ficulties either increase the size of control widgets or provide
pixel-level precision via a cursor-style indirection. These ap-
proaches are a legacy of the mouse- and cursor-based inter-
faces that have formed the predominant model of graphical
interaction in the past decades. We have shown that improv-
ing the approximation of contact by using a small selection
area rather than a point is an alternative solution to selection
issues on touchscreens. While using a selection area at first
appears to introduce selection ambiguity, rather than to re-
solve it, we argue that the ability to touch multiple objects at
once is an inherent property of human touch. Selection areas
simply make this property apparent to interaction designers,
allowing them to take better advantage of people’s manipula-
tion skills and to provide appropriate disambiguation mech-
anisms when necessary. Sliding is but one way of selecting
one of several crowded targets, but it is an effective method
that offers many of its own advantages. This new strategy ad-
dresses many existing issues in touch interaction and allows
for many expressive new designs.

ACKNOWLEDGEMENTS
We thank Pierre Dragicevic, Fanny Chevalier, Jean-Daniel
Fekete, and Anastasia Bezerianos for many useful sugges-
tions and enlightening discussions.

REFERENCES
1. J. Accot and S. Zhai. Beyond fitts’ law: models for

trajectory-based hci tasks. In Proceedings of CHI ’97,
295–302, New York, NY, USA, 1997. ACM.

2. J. Accot and S. Zhai. More than dotting the i’s — foun-
dations for crossing-based interfaces. In Proceedings of
CHI 2002, 73–80, New York, NY, USA, 2002. ACM.

3. P. A. Albinsson and S. Zhai. High precision touch
screen interaction. In Proceedings of CHI 2003, 105–
112, New York, NY, USA, 2003. ACM.

4. G. Apitz and F. Guimbretière. Crossy: a crossing-based
drawing application. In Proceedings of UIST ’04, 3–12,
New York, NY, USA, 2004. ACM.

5. Apple Inc. Apple iPhone. http://www.apple.
com/iphone/.

6. P. Baudisch. Don’t click, paint! Using toggle maps to
manipulate sets of toggle switches. In Proceedings of
UIST ’98, 65–66, New York, NY, USA, 1998. ACM.

7. P. Baudisch and G. Chu. Back-of-device interaction al-
lows creating very small touch devices. In Proceedings
of CHI 2009, New York, NY, USA, 2009. ACM.

8. H. Benko, A. D. Wilson, and P. Baudisch. Precise selec-
tion techniques for multi-touch screens. In Proceedings
of CHI 2006, New York, NY, USA, 2006. ACM.

9. X. Cao, A. D. Wilson, R. Balakrishnan, K. Hinckley,
and S. Hudson. Shapetouch: Leveraging contact shape
on interactive surfaces. In Proceedings of TABLETOP
2008. IEEE, 2008.

10. G. Chu, T. Moscovich, and R. Balakrishnan. Haptic
conviction widgets. In Proceedings of Graphics Inter-
face 2006, Kelowna, Canada, 2009.

11. H. A. Colle and K. J. Hiszem. Standing at a kiosk:
effects of key size and spacing on touch screen numeric
keypad performance and user experience. Ergonomics,
47(13):1406–1423, 2004.

12. C. Forlines, C. Shen, and B. Buxton. Glimpse: a novel
input model for multi-level devices. In Proceedings of
CHI ’05, New York, NY, USA, 2005. ACM.

13. P. Kabbash and W. A. S. Buxton. The “prince” tech-
nique: Fitts’ law and selection using area cursors. In
Proceedings of CHI ’95, 273–279, New York, NY,
USA, 1995. ACM.

14. A. K. Karlson, B. B. Bederson, and J. SanGiovanni.
Applens and launchtile: two designs for one-handed
thumb use on small devices. In Proceedings of CHI
2005, 201–210, New York, NY, USA, 2005. ACM.

15. M. W. Krueger, T. Gionfriddo, and K. Hinrichsen.
Videoplace: An artificial reality. In Proceedings of CHI
’85, 35–40, New York, NY, USA, 1985. ACM.

16. G. Kurtenbach. The Design and Evaluation of Marking
Menus. PhD thesis, University of Toronto, 1993.

17. M. Leahy and D. Hix. Effect of touch screen target
location on user accuracy. In Proceedings of The Hu-
man Factors and Ergonomics Society Annual Meeting.
ACM, 1990.

18. Microsoft. Pen and Touch Input in Windows
Vista. http://msdn.microsoft.com/en-us/
library/ms702418(VS.85).aspx.

19. A. Olwal, S. Feiner, and S. Heyman. Rubbing and
tapping for precise and rapid selection on touch-screen
displays. In Proceedings of CHI 2008, 295–304, New
York, NY, USA, 2008. ACM.

20. Opera Software. Introducing Opera Fingertouch.
http://labs.opera.com/news/2009/03/
05/.

21. P. Parhi, A. K. Karlson, and B. B. Bederson. Target size
study for one-handed thumb use on small touchscreen
devices. In Proceedings of MobileHCI 2006, 203–210,
New York, NY, USA, 2006. ACM.

22. C. Plaisant and D. Wallace. Touchscreen toggle design.
In Proceedings of CHI ’92, 667–668, New York, NY,
USA, 1992. ACM.

23. R. L. Potter, L. J. Weldon, and B. Shneiderman. Im-
proving the accuracy of touch screens: an experimental
evaluation of three strategies. In Proceedings of CHI
’88, 27–32, New York, NY, USA, 1988. ACM.

24. J. Rekimoto. Smartskin: An infrastructure for freehand
manipulation on interactive surfaces. In Proceedings of
CHI 2002, 113–120. ACM, 2002.

25. A. Roudaut, S. Huot, and E. Lecolinet. Taptap and
magstick: improving one-handed target acquisition on
small touch-screens. In Proceedings of AVI 2008, 146–
153, New York, NY, USA, 2008. ACM.

26. D. Vogel and P. Baudisch. Shift: a technique for operat-
ing pen-based interfaces using touch. In Proceedings of
CHI 2007, 657–666, New York, NY, USA, 2007. ACM.

27. D. Wigdor, C. Forlines, P. Baudisch, J. Barnwell, and
C. Shen. Lucid touch: a see-through mobile device. In
Proceedings of UIST 2007, 269–278, New York, NY,
USA, 2007. ACM.

28. A. D. Wilson, S. Izadi, O. Hilliges, A. Garcia-Mendoza,
and D. Kirk. Bringing physics to the surface. In Pro-
ceedings of UIST 2008, 67–76, New York, NY, USA,
2008. ACM.

29. A. Worden, N. Walker, K. Bharat, and S. Hudson. Mak-
ing computers easier for older adults to use: area cur-
sors and sticky icons. In Proceedings of CHI ’97, 266–
271, New York, NY, USA, 1997. ACM.

30. K. Yatani, K. Partridge, M. Bern, and M. W. Newman.
Escape: a target selection technique using visually-
cued gestures. In Proceeding of CHI 2008, 285–294,
New York, NY, USA, 2008. ACM.

