

Eurographics/ACMSIGGRAPH Symposium on Computer Animation (2005)
K. Anjyo, P. Faloutsos (Editors)

© The Eurographics Association 2005

Spatial Keyframing for Performance-driven Animation

T. Igarashi 1,3, T. Moscovich 2, and J. F. Hughes 2

1 The University of Tokyo 2 Brown University 3 PRESTO, JST

Abstract
This paper introduces spatial keyframing, a technique for performance-driven character animation. In traditional
temporal keyframing, key poses are defined at specific points in time: i.e., we define a map from a set of key times
to the configuration space of the character and then extend this map to the entire timeline by interpolation. By con-
trast, in spatial keyframing key poses are defined at specific key positions in a 3D space where the character lives;
the mapping from the 3D space to the configuration space is again defined by interpolation. The user controls a
character by adjusting the position of a control cursor in the 3D space; the pose of the character is given as a
blend of nearby key poses. The user thus can make expressive motion in real time and the resulting motion can be
recorded and interpreted as an animation sequence. Although similar ideas are present in previous systems, our
system is unique in that the designer can quickly design a new set of keyframes from scratch, and make an anima-
tion without motion capture data or special input devices. Our technique is especially useful for imaginary charac-
ters other than human figures because we do not rely on motion-capture data. We also introduce several applica-
tions of the basic idea and give examples showing the expressiveness of the approach.

1. Introduction

The most popular approach to character animation is key-
framing, where the designer manually specifies the pose of
a character as a discrete set of frames (keyframes) and the
computer synthesizes the poses in the remaining frames.
However, novice users have difficulty in creating fluid
motion using this approach and it is very labor-intensive
work. Other approaches such as motion capture and physi-
cally based simulation are available, but they are expen-
sive to use and are not suitable for designing expressive
imaginary motions. Furthermore, motion capture is mainly
designed for human figures and is not directly applicable
to imaginary characters.

We describe here a method that lets novice users create
lively animations for arbitrary 3D characters quickly and
easily using a standard input device such as a mouse. The
basic idea is to directly record the user's performance or
actions, that is, the user's direct manipulation of the char-
acter. We believe that this is much faster and more intui-
tive than traditional temporal keyframing, because the user
need not mentally translate static keyframes to temporal
motion during design. In performance-driven animation,

what you perform and see on the screen during recording
is what you obtain as the final result.

Figure 1: Spatial keyframing with six key poses (top)
and an example animation sequence using it (bottom). The
user associates each pose with a location in space (yellow
markers) in a preparation phase. During performance, the
user moves the control cursor (red sphere) and the system
synthesizes an animation sequence by blending nearby
poses.

T. Igarashi, T. Moscovich, and J. F. Hughes / Spatial Keyframing for Performance-driven Animation

© The Eurographics Association 2005.

The problem is that it is difficult to control complicated
motion of a character in real time using standard input
devices. A character may have many degrees of freedom
(DOFs), including position, orientation, and angles at
many joints, while a typical input device has only two
DOFs. To control many DOFs in real time with input de-
vices with limited DOFs, our system takes several prede-
fined key poses and blends them in real time during per-
formance. In a preparation phase, the user creates several
key poses and associates them with specific positions in
the 3D space (which we call spatial keyframes). During
performance, the user moves a control cursor in the 3D
space and the system synthesizes a corresponding pose by
blending nearby spatial keyframes (Figure 1).

Synthesizing new poses by blending predefined poses is
already common practice, and making animations from
real-time performance is not new. The main contribution
of this paper is to combine these methods in a practical
system for making lively character animations from
scratch without motion-capture data or special input de-
vices. This paper also describes specific methods for
blending poses to obtain reasonable results with very
sparse key poses, as well as several extensions to the basic
idea. We hope that this paper encourages the use of per-
formance-driven approaches for character animation. The
resulting animations are very different from those created
using traditional methods, as they make apparent the ani-
mator's natural sense of timing. It is also much easier and
more fun to create animations this way.

2. Related work

Performance-driven animation and puppeteering usually
rely on a specialized input device or a motion-capture
system [Stu98]. The direct mapping they assign between
the character's DOFs and the device's DOFs requires a
significant amount of training and expertise to control
fluently. Shin et al. [SLG01] introduced methods for
retargeting a motion-captured performer's full body motion
to characters of different sizes. Dontcheva et al. [DYP03]
proposed layered acting, where the user designs compli-
cated motions by multiple acting passes. Our goal is to
make performance-driven animation more accessible to
casual users who lack expensive devices.

Synthesizing new poses by blending predefined poses is
already done in many animation systems, but most of them
are designed for large amounts of motion-capture data.
Wiley and Hahn [WH97] associated key poses obtained by
motion capture to a dense grid of points in space and line-
arly interpolated them. Rose et al. [RBC98] interpolated
motion-capture sequences using radial basis functions to
express the character's emotions. Kovar and Gleicher's
system [KG04] automatically constructs a parameterized
space of motions by analyzing large amounts of motion
data and synthesizes a new pose by weighed interpolation
of nearby poses. Our system is designed to work with very
few key poses and does not require a large motion data set.

One work closely related to ours is the artist-directed in-
verse kinematics of Rose et al. [RSC01]. They also used
radial basis functions to interpolate sparse examples in
space. Our goal differs from theirs in that we focus on
performance-driven animation authoring from scratch,
while their focus was on controlling pre-authored motion
data.

There are other related interactive systems for animation.
Ngo et al. [NCD*00] used linear interpolation for manipu-
lating 2D vector graphics. Key poses are embedded in a
special structure called a simplicial configuration complex.
Rademacher [Rad99] used interpolation for controlling
view-dependent geometry. Key geometries are associated
with specific view directions and are blended according to
the current view direction. Laszlo et al. [LvPF00] com-
bined interactive character control with physics-based
simulations. They showed an example in which the hori-
zontal and vertical motions of the mouse were directly
mapped to the character's individual DOFs. The "motion
doodle" system lets the user sketch the intended motion
path; the system then synthesizes an appropriate motion by
combining pre-authored keyframe animations [TBvP04].
Terra and Metoyer used performance for timing pre-
authored key frame animation [TM04]. Donald and Henle
proposed to use a haptic input device to manipulate motion
capture data [DH00].

3. The User Interface

Our system consists of two subsystems. One is for design-
ing spatial keyframes and the other is for making anima-
tion using these keyframes.

3.1 Designing spatial keyframes

The user's first task is to design a set of spatial keyframes,
that is, to set poses of a character and associate them with
positions in the 3D space. The user first imports a 3D ar-
ticulated model into the system. We provide a standard
direct-manipulation interface for the 3D model. The user
can change the position of the character by dragging it
within the space and change its pose by rotating its parts;
the object can also be moved parallel to the ground by
dragging its shadow [HZR*92].

Once the user is satisfied with a pose, the next task is to
mark it as a new spatial keyframe by associating it with a
position in the 3D space. To do so, the user moves the red
control cursor to the target position and presses the "set"
button. A small yellow ball now appears at the location of
the control cursor that indicates the existence of the spatial
keyframe. A spatial keyframe consists of two elements: (1)
a character pose (e.g. joint angles) and (2) the xyz cursor
position that corresponds to that pose. The user defines a
set of these spatial keyframes by repeating the above proc-
ess and these keyframes define a mapping from the control
space to the set of the character's poses via an interpolation
procedure described in the next section. The user can ex-

T. Igarashi, T. Moscovich, and J. F. Hughes / Spatial Keyframing for Performance-driven Animation

© The Eurographics Association 2005.

amine this mapping at any time by dragging the control
cursor with the right mouse button down: the system
blends the neighboring spatial keyframes around the con-
trol cursor and continuously displays the result. This syn-
thesis is not done when the left mouse button is used; the
left button is reserved for setting new poses.

The important feature of the system is that the user can
set spatial keyframes at arbitrary positions in the 3D space,
and that the user can start testing interesting motions with
very few spatial keyframes. With only three keyframes,
the user can make interesting full body motion, as shown
in Figure 2. This is in contrast to linear interpolation sys-
tems that require many keyframes specified in a grid struc-
ture [WH97; NCD*00].

Note that the spatial keyframes are overlayed in the
same 3D space inhabited by the character. This is in con-
trast to Ngo et al.’s system [NCD*00] in which keys are
placed in a special configuration space. This makes it pos-
sible to establish an intuitive correspondence between the
location of a spatial keyfmrame and the associated pose.
For example, the keyframe for "look left" is likely to be on
the left side of the screen and "look right" on the right (as
in Figure 2). This intuitive mapping may be difficult to
achieve when using automatic mapping such as the method
introduced in [GMH04].

Figure 2: A simple example with three key poses. Three
key poses are associated with the three yellow balls (left).
As the user drags the red control cursor with the right
mouse button down, the system synthesizes a new pose by
blending the three (right). Note that many joint angles as
well as the character's position are controlled together.

3.2 Making animation by performance

Having set the necessary spatial keyframes, the animator
can use them to begin performing animations. In this phase,
the character's pose can no longer be adjusted directly. The
user moves the control cursor and the system shows the
synthesized pose on the screen (Figure 3). Recording starts
when the user starts dragging the control cursor after
pressing the "record" button and finishes when the mouse
button is released. The user can watch the resulting motion
immediately by pressing the "play" button, and can watch
it from any direction by changing the camera position.

Figure 3: Juggling. The user first sets the nine key poses

as shown on the left. As the user drags the control cursor,
the character performs a smooth motion as shown on the
right.

3.3 Discussion

In the current system a 2D mouse is used to control the
position of the 3D control cursor and the control cursor
moves parallel to the screen during dragging, so the mo-
tion of the 3D control cursor is actually 2D motion. Al-
though interesting animations can be designed with this
setup, we plan to investigate the possibility of using 3D
input devices. Three-dimensionally distributed key poses
may also be helpful for scripting purposes when specifying
the 3D motion of the control cursor (see Section 5.3).

Designing animations in this way is really intuitive and
fast. The spatial keyframe examples in this paper took only
10 to 20 minutes to design. This includes several iterations
to adjust the resulting motion. After setting the keyframes,
the only thing the user needs to do is to drag the control
cursor. There is no need to directly edit each frame or
repeat performance, as is required in layered acting
[DYP03]. The time necessary to make an animation se-
quence is the same as the time to play it. In addition, the
resulting motion is very lively because the user's direct
hand motion is (indirectly) present in the animated motion.
This is in contrast to the unnatural, robotic motion de-
signed by novice users using standard keyframing. This
idea is similar in spirit to the technique introduced by
Terra and Metoyer [TM04], but they used performance to
adjust only the timing of a predefined keyframe animation
while our system allows the user to control timing and
pose simultaneously.

A possible concern is that each mapping is usually spe-
cific to a single motion and thus not very reusable. This is
true to some extent; the mapping defined for juggling
makes little sense for other motions. However, our method
allows the user to easily experiment with and design a
wide variety of motions within a specific class of motion,
e.g. in juggling the user can move the ball fast or slowly,
high or low, clockwise or anti-clockwise. This flexibility is
missing in traditional temporal keyframing methods and is
critical for designing convincing motions.

4. Algorithm

This section describes the algorithm we use in the current
implementation. Note that the main purpose of the follow-
ing description is to provide the necessary information to
implement the system, not to propose a better algorithm

T. Igarashi, T. Moscovich, and J. F. Hughes / Spatial Keyframing for Performance-driven Animation

© The Eurographics Association 2005.

for motion blending. The blending of motion is essentially
a difficult problem. Many techniques have been proposed,
such as quaterenions and the exponential map, each with
its own strengths and weaknesses. We chose this particular
method because it is easy to implement, works well in
practice, and satisfies certain reasonable user expectations
It is our future work to implement and compare other ap-
proaches in detail.

The system takes the xyz-coordinates of the control cur-
sor and a set of spatial keyframes (the xyz-coordinates of
anchors and associated character poses) as input and re-
turns a blended character pose. A pose is defined as a set
of local transformations of the body parts. We currently do
not allow translation for any part except the root, so we
have 3×3 rotation matrices for all parts and one xyz trans-
lation vector for the root part. We interpolate each entry of
the matrix using a radial basis function and orthonormalize
the resulting matrix.

4.1 Interpolation using a radial basis function

Radial basis interpolation is useful for scattered data inter-
polation [Powell87]. We use the interpolation method
described by Turk and O'Brien [TO02]. Each entry of each
matrix is treated as a real-valued function on the control
space, expressed in the form

)()()(
1

xxx Pcdf
nj

j
jj +−Φ=∑

=

=

where F(x) is a radial basis function, cj are the marker
positions, dj are the weights, and P(x) is a degree-one
polynomial. We currently use F(x) = | x | as a basis func-
tion. We chose this function empirically after several
experiments, largely because the interpolation result
follows the control cursor most faithfully. Other functions
are smoother but show some oscillation effects.

The system solves for values dj such that f(x) represents
the given pose at the marker locations: supposing hj=f(cj),
the constraint is represented as

)()(
1

i

nj

j
jiji cPccdh +−Φ=∑

=

=

Since this equation is linear with respect to the un-
knowns, dj and the coefficients of P(x), it can be formu-
lated as the following linear system:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

ΦΦ

ΦΦ

0
0
0
0

0000
0000
0000
000011

1

1 1

3

2

1

0

1

1

1

1

1

1

111111

nn

z
n

z

y
n

y

x
n

x

z
n

y
n

x
nnnn

zyx
n

h

h

p
p
p
p
d

d

cc
cc
cc

ccc

ccc
MM

L

L

L

L

L

MMMMMM

L

where),,(z
i

y
i

x
ii cccc = ,)(jiij cc −Φ=Φ ,

 zpypxppP 3210)(+++=x .

We obtain the interpolation function f(x) by solving the
above linear system. We need to solve the linear system
for each entry of the 3×3 rotation matrix. However, the
large coefficient matrix on the left hand side of the above
equation is identical for all nine entries, so we only need to
invert the large matrix once for each joint. For the root part,
we also compute each entry of the translation vector using
this method.

Special care must be taken when there are fewer than
four spatial keyframes and when the spatial distribution of
the markers is degenerate (linearly or two-dimensionally
distributed). In these cases, we apply the interpolation in a
space of reduced dimensions by mapping the marker loca-
tions to the reduced space before applying the above pro-
cedure. The dimension of P(x) is also reduced accordingly.
The choice of F(x) must also change to obtain true thin-
plate interpolation [TO02], but we currently use F(x) = | x |
for all dimensions and it works well.

4.2 Orthonormalization

The interpolated matrix obtained by the above procedure is
not in general an orthonormal rotation matrix; we need to
orthonormalize it. In some methods for orthonormalization
such as Gram-Schmidt, the result is not necessarily close
to the original matrix. We currently use the following it-
erative refinement method to orthonormalize the matrix by
maintaining the balance between the three axes (Figure 4).

Suppose we have three basis vectors
0xr ,

0yr ,
0zr and want

to orthonormalize them. We first normalize them. We then
compute

000 zyu rrr
×= ,

000 xzv rrr
×= ,

000 yxw rrr
×= and

normalize these. Then we compute 2/)(001 uxx rrr
+= ,

2/)(001 vyy rrr
+= , 2/)(001 wzz rrr

+= and normalize them. We
repeat the above procedure until the residual

() () ()222
nnnnnn xzzyyxr rrrrrr

⋅+⋅+⋅= is below a threshold or the
number of repetition exceeds a predefined count. We
currently use 0.000001 for the residual threshold and 10
for the count. It usually takes fewer than 3 iterations to
obtain visually pleasing results. The maximum number, 10,
is sufficient to detect a degenerate case.

Figure 4: Orthonormalization process. The system

gradually makes the basis vectors perpendicular to each
other.

T. Igarashi, T. Moscovich, and J. F. Hughes / Spatial Keyframing for Performance-driven Animation

© The Eurographics Association 2005.

The above method is empirically designed with the goal
of obtaining reasonable results robustly and quickly with a
simple implementation. The outcome is satisfactory in our
experience. It does not work for degenerate cases such as

0000

rrrr
=== zyx that can arise, for example, when the con-

trol cursor is in the middle of two key poses that face com-
pletely opposite directions. In that case, the convergence
fails and a skewed result is shown on the screen.
Degenerate cases like this are unavoidable when creating a
sufficiently nice mapping from 2-space or 3-space to the
rotation group (“Sufficiently nice” in this case means that
if two control points correspond to nearby rotations, then
the line segment between them must correspond to a path
near the geodesic path between these two rotations, which
is meant to match user expectations). However, the answer
is not well defined anyway in such cases from the user’s
point of view. The user naturally understands the existence
of the degeneracy and avoids it during performance.

The method also has the nice mathematical property that
if R is a rotation and M is a small perturbation to R that’s
orthogonal to the manifold of rotation matrices, considered
as a submanifold of the manifold of all 3×3 matrices, then
our process, applied to R + tM, yields a matrix that agrees
with R to second order in t, i.e., it’s esentially an
orthogonal projection onto the rotation group, a property
not shared by Gram-Schmidt, for instance, as can be seen
by perturbing the identity by a small multiple of

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

000
001
010

.

4.3 Why not angular parameterization?

One might ask why we do not use angular parametriza-
toins such as euler angles, quaternions [Sho85], or the
exponential map [Gra98] for the interpolation. Our short
answer is that our domain is three-dimensional space and
not sequential time, as is often the case when the typical
interpolation happens. We describe two example issues
that arise in this domain. Note that we only claim here that
straightforward application of other approaches does not
work well in our target domain. It may be possible to ob-
tain similar results to ours by elaborating angular parame-
terizations [PSS02][BF01]. We leave further discussion to
future publications.

The first issue is that simple angular parameterization
does not behave as expected for extrapolation in our sys-
tem (Figure 5). Suppose we have the two keyframes on the
left. As we move the control cursor to the right, the head
continues to turn if we use angular parameterization. In
contrast, our method naturally keeps the head looking at
the cursor. This is a design issue rather than a theoretical
problem, but the basic idea behind spatial keyframing is to

associate the pose with a position in space and angular
parameterization breaks the natural mapping.

0 degrees 30 degrees 180 degrees?

Key Poses Synthesis Result

Figure 5: An example synthesis result with straightfor-

ward angular parameterization. As the user drags the
control cursor, the character rotates continuously. With
our approach the character appropriately looks at the
control cursor.

The second issue is that there is a discontinuity when a
part rotates 360 degrees. When using euler angles, the
discontinuity is apparent. Even when using quaternions,
the pose at 0 degrees and 360 degrees are located at oppo-
site poles of the unit sphere in 4D space. This is not a
problem when using a linear parameter space such as time,
but we are working in two- or three-dimensional continu-
ous parameter space. Figure 6 shows what happens when
we apply angular parameterization naively. Suppose we
have the four spatial keyframes shown on the left. If we
move the control cursor between the first and last marker,
the resulting pose is something between the second and
third key pose on the left, because there is a discontinuity
in angular parameter space between the first and last spa-
tial keyframe. It might be possible to design methods that
avoid this problem by elaborating on angular
parameterization, but we believe that our approach
(directly interpolating the rotation matrix) is more
straightforward and easier to implement for our particular
application domain.

0 degrees 30 degrees 180 degrees 270 degrees 135 degrees?

Key Poses Synthesis Result

Figure 6: Another synthesis result when using straight-

forward angular parameterization. If we have the four key
poses shown on the left and places the control cursor at
the place as shown on the right, the result is the blend of
the four angles as shown on the right. Our system returns
natural results by interpolating each component independ-
ently.

Previous pose interpolation systems used angular
parameterization [WH97; RSC01]; this was a reasonable
decision because these systems were designed primarily to
blend existing motions and the problems described above
do not arise. However, our goal is the creation of a new
motion from scratch by performance and it is crucial to be
able to support dynamic behavior such as that shown in
Figure 1.

T. Igarashi, T. Moscovich, and J. F. Hughes / Spatial Keyframing for Performance-driven Animation

© The Eurographics Association 2005.

5. Extensions

This section describes some extensions to the basic
framework. These extensions are applications of existing
ideas for spatial keyframing and we do not claim signifi-
cant novelty here. We describe them here in order to show
the possibilities of our technique and to inspire further
exploration.

5.1 Inverse kinematics

Inverse kinematics (IK) is the process of determining the
joint configuration required to place a particular part of an
articulated character at a particular location in space. The
most popular approach is to incrementally update the joint
angles to satisfy the given constraints using Jacobian itera-
tion [G M85; WW92]. In other words, the system
gradually pulls the grabbed part to the target location. This
means that the resulting pose is dependent on the previous
pose, which can easily lead to very unnatural poses. Many
solutions to this problem have been proposed, for instance
using biomechanics knowledge [GGL96], constraint solv-
ing [YN03], and example-based optimization [GMH04].
However, they require manual encoding of various low-
level constraints or large motion-capture datasets.
Furthermore, it is difficult to include artistic control in the
process.

Our spatial keyframing can be useful in adding artistic
control to the inverse kinematics process. The algorithm is
very simple. Instead of starting Jacobian-based refinement
from the previous frame, we start the process from the
synthesis result using spatial keyframing (Figure 7). This
makes the resulting pose very stable. Regardless of the
pose in the previous frame, the resulting pose is always the
same for a given control cursor position. Our method can
be seen as a subset of the one presented in Rose et al.
[RSC01]. A similar technique is also used in [YKH04].

Figure 7: Initial pose (left), standard IK result (middle)
and IK with spatial keyframing (right). Standard IK can
produce very strange poses after continuous operation. In
contrast, IK with spatial keyframing returns stable results
regardless of previous pose.

5.2 Locomotion

Basic spatial keyframing is designed for controlling the
character's pose at a fixed base position, and does not work
well for animation involving travel or locomotion. The
user can certainly represent a small positional change by
setting the character in different places as independent

spatial keyframes (as in Figure 1), but a long traveling
sequence, such as walking, requires too many spatial key-
frames.

One way to address this issue is to automatically change
the character's position with respect to its body motion.
We were inspired by interactive character control by
Laszlo et al. [LvPF00], in which the user controls the
character's limbs and the locomotion is generated as a
result of a physically-based simulation. We would like to
test similar physically-based simulation in the future, but
currently use a simple rule to generate horizontal position
change from the character's poses; at each point in time,
the lowest point of the character is fixed relative to the
ground, and the character's base position slides to satisfy
the constraint [OTH02] (as it is too time-consuming to
check all vertices, we manually mark the tip of each toe
beforehand and use these marks for computing locomo-
tion). When the lowest part is above the ground, the base
position travels according to inertia; the system remembers
the horizontal traveling speed just before the lowest point
leaves the ground and continues to slide the ground with
the same speed until another point touches the ground. The
camera is fixed relative to the character's base position
during recording.

It is possible that some point on the free leg dips lower
than the supporting leg. In this case, the contact point sud-
denly switch, causing the character to start moving back-
wards. This problem can be serious if we consider all ver-
tices of the mesh as possible contact points, but we can
avoid most of the problem by using manually marked ver-
tices only. In practice, we do experience some “waddling”
motion when creating various walking motions, but the
result is acceptable for novice users to quickly create sim-
ple animations. It is also very easy to interactively fix the
problem by adjusting key poses and cursor trajectory when
a problem occurs.

Figure 8: Walking. Four key poses (top) and a walking
animation using them (bottom). Observe that the ground
slides along with the foot on the ground.

T. Igarashi, T. Moscovich, and J. F. Hughes / Spatial Keyframing for Performance-driven Animation

© The Eurographics Association 2005.

Figure 8 shows an example. It has four key poses that
represent a walking cycle. As the user moves the control
cursor counterclockwise, the character makes a walking
motion and the ground slides with the lower foot. The
faster the user moves the cursor, the faster the ground
slides, ensuring that foot-skating artifacts do not occur.
Figure 9 shows another example. The three key poses rep-
resent a galloping motion. The system slides the ground to
simulate inertia when the character is in the air.

Figure 9: Galloping. Three key poses (top) and a gal-
loping animation using them (bottom). Observe that the
ground slides along with the foot on the ground.

5.3 Scripting

We developed spatial keyframing primarily for interactive
puppetry and animation authoring by direct performance.
However, the central idea behind it is to create a compact,
low-DOF representation for high-DOF character poses,
which should be useful for applications other than direct
manipulation via a control cursor. One possibility is to use
simple scripting for animation authoring. When using
scripts to control a standard articulated character, individ-
ual joint angles must be specified explicitly. But using
spatial keyframing, one can control rich character move-
ment just by specifying the behavior of the control cursor
in a script. Scripting with spatial keyframing is also useful
for controlling mutually interacting characters.

We imagine that a set of spatial keyframes would be de-
signed for each character, and that they would be packaged
together (like the model and "rigging" of characters in
animation studios). Then, the script authors would import
the character with the spatial keyframe set and start writ-
ing scripts that select appropriate spatial keyframes and
control the control cursor. In traditional scripting systems
authors usually directly specify each joint angle [CDP00],
so the spatial keyframe technique can significantly lower
the bar and enrich the resulting animations. This is similar
to a blend-shape interface where a character model is
shipped with many adjustable control parameters, but our
spatial keyframing is unique in that the control cursor lives
in the same space as the character.

6. Implementation and Results

The current prototype system is implemented in Java
(JDK1.4) and uses DirectX8 for 3D rendering. It currently
uses articulated 3D models consisting of multiple rigid
parts embedded in a hierarchical structure. Freeform sur-
faces guided by embedded bones are not currently sup-
ported, but it is straightforward to apply spatial keyfram-
ing to such bone structures. We use an extension to the
Teddy system [IMT99] as a primary 3D modeling system,
in which the user can design a painted articulated 3D
character very rapidly (~10 minutes). Figure 1 and Figure
10 show example animations designed by the author.
Acting with spatial keyframing is useful for expressing the
characters' rich emotions in these simple actions.

Shaking Nodding 1 Nodding 2

Figure 10: An example animation. Using the six key
poses (top), one can design an animation sequence in
which the bear shakes his head, makes a small nod, and
makes a large nod in turn seamlessly.

Figure 11 shows an example of a highly articulated

character. We experimented with various motions and
found that our algorithm works well for these kinds of
characters especially when the target animation is a gen-
eral whole body motion such as dancing and gesturing. If
the target animation requires precise placement of end-
effectors, it might be better to interpolate the position of
the end-effectors first and then apply inverse kinematics as
in [YKH04]. It is our future work to implement this and
compare the results.

Figure 11: An example of a highly articulated character.

We have asked two professional artists to try the proto-

type system, one with extensive experience in 3D graphics

T. Igarashi, T. Moscovich, and J. F. Hughes / Spatial Keyframing for Performance-driven Animation

© The Eurographics Association 2005.

and the other mainly in 2D animations. They both under-
stood the concept quickly and started creating animation
within 30 minutes. Examples are shown in Figure 12 and
13. They commented that the system was fun to use and
the experience was very novel. However, the current im-
plementation is still preliminary and the test revealed its
limitations. The 2D artist had difficulty in setting individ-
ual poses with a mouse. Both wanted a mechanism to pre-
pare multiple sets of spatial keyframes for different mo-
tions and switch from one motion to another to create
meaningful stories. They noted that the system might not
be immediately useful for professional production because
they need precise control for each frame. They suggested
that the system could be useful for real-time performance
in front of audiences and for novice users.

Figure 12: An example spatial keyframes designed by a
3D expert with experience using standard keyframing. He
found that spatial keyframing is much more fun to use, and
that the resulting motion is very different from those cre-
ated using existing methods.

Figure 13: An example animation created by a 2D artist.
He found the system very fun to play with and inspiring but
also found that it is still difficult to specify individual 3D
poses with a mouse.

7. Limitations and Future Work

The main limitation of our technique is that spatial key-
framing is not directly applicable to some kinds of motions.
It is very natural and effective for motions that are seman-
tically associated with specific points in space, such as
gazing and object manipulation, but is difficult to apply to
more complicated motions such as speaking in sign lan-
guage. Another problem is that spatial keyframing can
represent only one type of motion at a time. We found that
reasonably interesting animations can be designed with a

single set of spatial keyframes by carefully distributing the
key poses in space, but there certainly is a limit. To ad-
dress these problems, we plan to investigate mechanisms
for combining multiple spatial keyframe sets and achiev-
ing smooth transitions between them. How well a typical
user can remember the different mappings is still an open
question which we hope to answer in future research.

Spatial keyframing can easily be combined with existing
methods for animation authoring. One can design more
complicated motion by using spatial keyframing in layered
acting [DYP03]. It is also straightforward to combine it
with interactive physically based simulation to generate
realistic motion automatically [LvPF00]. Motion doodles
can be used to specify the trajectory of the character's lo-
comotion while using spatial keyframing to control its
pose [TBvP04].

Spatial keyframing can be seen as supplemental infor-
mation added to a rigged character; skilled designers de-
sign a 3D character with predefined spatial keyframing
and end users quickly author their own motion with it. We
plan to develop tools to support widespread use of this
framework. Examples include plug-ins for commercial 3D
modeling and animation systems, 3D animation players
that supports spatial keyframing, and a library of 3D ar-
ticulated characters with pre-authored spatial keyframes.

References

[BF01] BUSS, S.R., FILLMORE, J.: Spherical Averages and
Applications to Spherical Splines and Interpolation,
ACM Transactions on Graphics, 20, 2, (2001), 95-126.

 [CDP00] COOPER S., DANN W., PAUSCH R.: Alice: A 3-D
Tool for Introductory Programming Concepts. Journal of
Computing Sciences in Colleges, 15, 5 (2000), 107-116.

[DH00] DONALD, B. R., HENLE, F.: Using haptic vector
fields for animation motion control. In Proceedings of
IEEE International Conference on Robotics and Automa-
tion, (2000).

[DYP03] DONTCHEVA M., YNGVE G., POPOVIC' Z.: Lay-
ered Acting for Character Animation. ACM Transactions
on Graphics, 22, 3 (2003), 409-416.

[GGL96] GULLAPALLI V., GELFAND J. J., LANE S. H.: Syn-
ergy-based Learning of Hybrid Position/Force Control
for Redundant Manipulators. In Proceedings of IEEE
Robotics and Automation Conference, (1996), 3526-3531.

[GM85] GIRARD M., MACIEJEWSKI A. A.: Computational
Modeling for the Computer Animation of Legged Figures.
In Computer Graphics (Proceedings of ACM SIGGRAPH
85), 19, 3 (1985), 263-270.

[GMH04] GROCHOW K., MARTIN S. L., HERTZMANN A.
POPOVIC' Z.: Style-based Inverse Kinematics. ACM
Transactions on Graphics, 23, 3 (2004), 522-531.

T. Igarashi, T. Moscovich, and J. F. Hughes / Spatial Keyframing for Performance-driven Animation

© The Eurographics Association 2005.

[Gra98] GRASSIA, F. S.: Practical parameterization of rota-
tions using the exponential map, Journal of Graphics
Tools archive, 3, 3, (1998), 29-48.

[HZR*92] HERNDON K. P., ZELEZNIK R. C., ROBBINS, D.
C., CONNER, D. B. SNIBBE, S. S., VAN DAM A.: Interac-
tive Shadows. In Proceedings of UIST ’92, (1992), 1-6.

[IMT99] IGARASHI T., MATSUOKA S., TANAKA, H.: Teddy:
A Sketching Interface for 3D Freeform Design. In Pro-
ceedings of ACM SIGGRAPH 1999, ACM Press / ACM
SIGGRAPH, Los Angeles, Ed., Computer Graphics Pro-
ceedings, Annual Conference Series, ACM, (1999), 409-
416.

[KG04] KOVAR L., GLEICHER M.: Automated Extraction
and Parameterization of Motions in Large Data Sets.
ACM Transactions on Graphics, 23, 3 (2004), 559-568.

[LvPF00] LASZLO J., VAN DE PANNE, M., FIUME, E.: Inter-
active Control for Physically-based Animation. In Pro-
ceedings of ACM SIGGRAPH 2000, ACM Press / ACM
SIGGRAPH, Ed., Computer Graphics Proceedings, An-
nual Conference Series, ACM, 2000, 201-208.

[NCD*00] NGO T., CUTRELL D., DANA J., DONALD B.,
LOEB L., ZHU S.: Accessible Animation and Customiza-
ble Graphics via Simplicial Configuration Modeling. In
Proceedings of ACM SIGGRAPH 2000, ACM Press /
ACM SIGGRAPH, Computer Graphics Proceedings,
Annual Conference Series, ACM, 2000. 403-410.

[OTH02] OORE, S., TERZOPOULOS, D., HINTON, G.: A
desktop input device and interface for interactive 3D
character animation, Proceedings of Graphics Interface
2002, (2002), 133-140.

[Pow87] POWELL M. J. D.: Radial Basis Functions for
Multivariable Interpolation: A Review. In Algorithms for
Approximation, J. C. Mason and M. G. Cox, Eds. Oxford
University Press, Oxford, UK, (1987), 143-167.

[PSS02] PARK, S. I., SHIN, H. J., SHIN, S. Y.: On-line Lo-
comotion Generation Based on Motion Blending, In Pro-
ceedings of Symposium on Computer Animation, (2002),
105-111.

[Rad99] RADEMACHER P.: View-Dependent Geometry. In
Proceedings of ACM SIGGRAPH 1999, ACM Press /
ACM SIGGRAPH, Computer Graphics Proceedings,
Annual Conference Series, ACM, (1999), 439-446.

[RBC98] ROSE C., BODENHEIMER B., COHEN M.: Verbs
and Adverbs: Multidimensional Motion Interpolation Us-
ing Radial Basis Functions. IEEE Computer Graphics
and Applications 18, 5 (1998), 32-40.

[RSC01] ROSE III C. F., SLOAN P.-P. J., COHEN M. F.:
Artist-Directed Inverse Kinematics Using Radial Basis
Function, Interpolation. Computer Graphics Forum, 20, 3
(2001), 239-250.

[SLGS01] SHIN H. J., LEE J., GLEICHER M., SHIN, S. Y.:
Computer Puppetry: An Importance-Based Approach.
ACM Transactions on Graphics, 20, 2 (2001), 67-94.

[Sho85] SHOEMAKE, K.: Animating Rotations with Qua-
ternion Curves. In Computer Graphics (Proceedings of
ACM SIGGRAPH 85), 19, 3 (1985), 245-254.

[Stu98] STURMAN, D. J.: Computer Puppetry. IEEE Com-
puter Graphics and Applications, 18, 1 (1998), 38-45.

[TBvP04] THORNE M., BURKE, D., VAN DE PANNE M.: Mo-
tion Doodles: An Interface for Sketching Character Mo-
tion. ACM Transactions on Graphics, 21, 3 (2004), 424-
431.

[TM04] TERRA S.C.L., METOYER R.A.: Performance tim-
ing for keyframe animation. In Proceedings of SCA 2004,
(2004), 253 - 258.

 [TO02] TURK G., O'BRIEN J. F.: Modelling with Implicit
Surfaces That Interpolate. ACM Transactions on Graph-
ics, 21, 4 (2002), 855-873.

[WH97] WILEY D.J., HAHN J.K.: Interpolation Synthesis of
Articulated Figure Motion. IEEE Computer Graphic
and Applications, 17, 6 (1997), 39-45.

[WW92] WATT A., WATT M.: Advanced Animation and
Rendering Techniques: Theory and Practice. Addison-
Wesley, 1992.

[YKH04] YAMANE, L., KUFFNER, J. J., HODGINS, J. K.:
Synthesizing animations of human manipulation tasks.
ACM Transactions on Graphics, 23, 3 (2004), 532-539.

[YN03] YAMANE K., NAKAMURA Y.: Natural Motion Ani-
mation Through Constraining and Deconstraining at Will.
IEEE Transaction on Visualization and Computer
Graphics, 9, 3 (2003), 352-360.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

